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How to solve differential equations complete. 

 

Author:  

  mathematics teacher  Zbigniew Jan Stebel 
 

Find a solution to the equation: 
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The equation is the total equation, because: 

,3

3











t

N

y

M

 

so  .
t

N

y

M









 

Therefore, there is a function  ),( yt such that the conditions 
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Go to function :),( yt  
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Comparing the parties last equation to the equation (ii) we have: 
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The equation (1) has a solution 
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Method Two: 

If 
y

ytN



),(   that course    ).(),(),( tkdyytNyt  

Because  )(
),(

),( tkdy
t

ytN

t
ytM 









  , Thus )(tk   it can be found from the equation:  

 


 .

),(
),()( dy

t

ytN
ytMtk  

Inserting the functions get: 



 2 
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Differentiating the variable t and taking into account the condition (i): 
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We have to resolve the issue of the original: 
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At the top mark the appropriate functions 
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 Is this a complete equation? 
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 that is, the equation is complete, because .
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 There is a function of ),( yt  satisfying the conditions: 
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It's easier to calculate the equation over another, thus taking advantage of this equation we 

get: 
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Differentiating the last variable to the equation after t  get: 
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Comparing with the condition receive the first equation of the form: 
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Thus, a total solution: 
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 where C  integration has become. 

With the initial conditions, we know that 
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We received a solution with the initial conditions: 

.1
224



tyet

yt
 

 

We have a differential equation: 
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Which is not an absolute equation?  

Can I turn them into a complete equation? 
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When this equation is the total equation? 
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The equation (*) is the total equation and then only if the equation is satisfied (**). 

 

Definition 

Feature    satisfies the equation (**) is called a factor which is calculated over the equation 

(*). 

Unfortunately, only in specific situations, we can solve the equation (**). 

We know how to resolve them when the function    is a function only argument t, or only 

argument y. 

When   )(),( tyt    then the equation (**) reduces to the equation: 
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This equation makes sense when:  
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 ) is a function only argument t, and therefore 

we can write: 
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In this case we receive the order: 
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We received that: .)(
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The data is a differential equation: 

 (3) .0)(2
2

2


dt

dy
eyye

y tt  

Consider whether it is a complete differential equation? 
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According to the algorithm, we have 
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So the equation of the form: 

  02
2

2
2


dt

dy
eyeyee

y tttt  

is an absolute equation. 

We look for such functions ),( yt  that the conditions are met: 

.

2
2

2

2

2

tt

tt

eye
y

yee
y

t












 

We count on both sides of the integrated two equations, respectively terms of variable t and y: 
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Comparing these parties to the equation, we see that .0)(0)(  tkyh  

Therefore, the solution of our equation is the form: 
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Assume further that the 
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Ultimately, the solution differential equation (3) from the initial condition (4) is: 
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Complete differential equations can also solve other alternative methods, for example, the 

method operators. 

 

 


